Exercise 7.7.1

If our linear, second-order ODE is inhomogeneous, that is, of the form of Eq. (7.94), the most general solution is

$$
y(x)=y_{1}(x)+y_{2}(x)+y_{p}(x),
$$

where y_{1} and y_{2} are independent solutions of the homogeneous equation. Show that

$$
y_{p}(x)=y_{2}(x) \int^{x} \frac{y_{1}(s) F(s) d s}{W\left\{y_{1}(s), y_{2}(s)\right\}}-y_{1}(x) \int^{x} \frac{y_{2}(s) F(s) d s}{W\left\{y_{1}(s), y_{2}(s)\right\}}
$$

with $W\left\{y_{1}(x), y_{2}(x)\right\}$ the Wronskian of $y_{1}(s)$ and $y_{2}(s)$.
[TYPO: These should be $y_{1}(x)$ and $y_{2}(x)$.]

Solution

Eq. (7.94) is the general linear second-order inhomogeneous ODE.

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=F(x) \tag{7.94}
\end{equation*}
$$

Because it's linear, the general solution can be written as a sum of the complementary solution and the particular solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

The complementary solution satisfies the associated homogeneous ODE.

$$
y_{c}^{\prime \prime}+P(x) y_{c}^{\prime}+Q(x) y_{c}=0
$$

Suppose that two linearly independent solutions for $y_{c}(x)$ are $y_{1}(x)$ and $y_{2}(x)$. Then, by the principle of superposition, the general solution is $y_{c}(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)$. On the other hand, the particular solution satisfies

$$
y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=F(x) .
$$

According to the method of variation of parameters, the particular solution is obtained by allowing the parameters in y_{c} to vary: $y_{p}(x)=C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)$. Substitute this formula into the ODE and simplify the result.

$$
\begin{aligned}
& {\left[C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)\right]^{\prime \prime}+P(x)\left[C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)\right]^{\prime} } \\
&+Q(x)\left[C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)\right]=F(x) \\
& {\left[C_{1}^{\prime}(x) y_{1}(x)+C_{1}(x) y_{1}^{\prime}(x)+C_{2}^{\prime}(x) y_{2}(x)+C_{2}(x) y_{2}^{\prime}(x)\right]^{\prime} } \\
&+P(x)\left[C_{1}^{\prime}(x) y_{1}(x)+C_{1}(x) y_{1}^{\prime}(x)+\right.\left.C_{2}^{\prime}(x) y_{2}(x)+C_{2}(x) y_{2}^{\prime}(x)\right] \\
&+Q(x)\left[C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)\right]=F(x) \\
& {\left[C_{1}^{\prime \prime}(x) y_{1}(x)+2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)+C_{1}(x) y_{1}^{\prime \prime}(x)+C_{2}^{\prime \prime}(x) y_{2}(x)+2 C_{2}^{\prime}(x) y_{2}^{\prime}(x)+C_{2}(x) y_{2}^{\prime \prime}(x)\right] } \\
&+P(x)\left[C_{1}^{\prime}(x) y_{1}(x)+C_{1}(x) y_{1}^{\prime}(x)+\right.\left.C_{2}^{\prime}(x) y_{2}(x)+C_{2}(x) y_{2}^{\prime}(x)\right] \\
&+Q(x)\left[C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x)\right]=F(x)
\end{aligned}
$$

Factor the terms with $C_{1}(x)$ and $C_{2}(x)$. Because y_{1} and y_{2} satisfy the associated homogeneous equation, they all add to zero.

$$
\begin{aligned}
& {\left[C_{1}^{\prime \prime}(x) y_{1}(x)+2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)+C_{2}^{\prime \prime}(x) y_{2}(x)+2 C_{2}^{\prime}(x) y_{2}^{\prime}(x)\right]+P(x)\left[C_{1}^{\prime}(x) y_{1}(x)+C_{2}^{\prime}(x) y_{2}(x)\right]} \\
& C_{1}(x)[\underbrace{y_{1}^{\prime \prime}(x)+P(x) y_{1}^{\prime}(x)+Q(x) y_{1}(x)}_{=0}]+C_{2}(x)[\underbrace{y_{2}^{\prime \prime}(x)+P(x) y_{2}^{\prime}(x)+Q(x) y_{2}(x)}_{=0}]=F(x)
\end{aligned}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) y_{1}(x)+C_{2}^{\prime}(x) y_{2}(x)=0, \tag{1}
\end{equation*}
$$

then the previous equation reduces to

$$
\begin{align*}
C_{1}^{\prime \prime}(x) y_{1}(x)+2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)+C_{2}^{\prime \prime}(x) y_{2}(x)+2 C_{2}^{\prime}(x) y_{2}^{\prime}(x) & =F(x) \\
{\left[C_{1}^{\prime}(x) y_{1}(x)\right]^{\prime}+C_{1}^{\prime}(x) y_{1}^{\prime}(x)+\left[C_{2}^{\prime}(x) y_{2}(x)\right]^{\prime}+C_{2}^{\prime}(x) y_{2}^{\prime}(x) } & =F(x) . \tag{2}
\end{align*}
$$

We now have a system of two equations for the two unknowns, $C_{1}(x)$ and $C_{2}(x)$. Solve equation (1) for $C_{2}^{\prime}(x)$

$$
\begin{equation*}
C_{2}^{\prime}(x)=-\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x) \tag{3}
\end{equation*}
$$

and then plug this result into equation (2) to get one solely for $C_{1}^{\prime}(x)$.

$$
\begin{gathered}
C_{1}^{\prime \prime}(x) y_{1}(x)+2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)+\left[-\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x)\right]^{\prime} y_{2}(x)+2\left[-\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x)\right] y_{2}^{\prime}(x)=F(x) \\
\begin{array}{r}
C_{1}^{\prime \prime}(x) y_{1}(x)+2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)-\left[\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime \prime}(x)+\frac{y_{1}^{\prime}(x) y_{2}(x)-y_{2}^{\prime}(x) y_{1}(x)}{\left[y_{2}(x)\right]^{2}} C_{1}^{\prime}(x)\right] y_{2}(x) \\
+2\left[-\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x)\right] y_{2}^{\prime}(x)=F(x) \\
2 C_{1}^{\prime}(x) y_{1}^{\prime}(x)-\frac{y_{1}^{\prime}(x) y_{2}(x)-y_{2}^{\prime}(x) y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x)-\frac{2 y_{2}^{\prime}(x) y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x)=F(x) \\
C_{1}^{\prime}(x)\left[2 y_{1}^{\prime}(x)-\frac{y_{1}^{\prime}(x) y_{2}(x)-y_{2}^{\prime}(x) y_{1}(x)}{y_{2}(x)}-\frac{2 y_{2}^{\prime}(x) y_{1}(x)}{y_{2}(x)}\right]=F(x) \\
C_{1}^{\prime}(x)\left[\frac{y_{1}^{\prime}(x) y_{2}(x)-y_{2}^{\prime}(x) y_{1}(x)}{y_{2}(x)}\right]=F(x)
\end{array}
\end{gathered}
$$

Solve for $C_{1}^{\prime}(x)$.

$$
C_{1}^{\prime}(x)=-\frac{y_{2}(x)}{y_{2}^{\prime}(x) y_{1}(x)-y_{1}^{\prime}(x) y_{2}(x)} F(x)
$$

Integrate both sides with respect to x, setting the integration constant to zero.

$$
C_{1}(x)=\int^{x}-\frac{y_{2}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s
$$

Now substitute the previous formula for $C_{1}^{\prime}(x)$ into equation (3) to get $C_{2}(x)$.

$$
\begin{aligned}
C_{2}^{\prime}(x) & =-\frac{y_{1}(x)}{y_{2}(x)} C_{1}^{\prime}(x) \\
& =-\frac{y_{1}(x)}{y_{2}(x)}\left[-\frac{y_{2}(x)}{y_{2}^{\prime}(x) y_{1}(x)-y_{1}^{\prime}(x) y_{2}(x)} F(x)\right] \\
& =\frac{y_{1}(x)}{y_{2}^{\prime}(x) y_{1}(x)-y_{1}^{\prime}(x) y_{2}(x)} F(x)
\end{aligned}
$$

Integrate both sides with respect to x, setting the integration constant to zero.

$$
C_{2}(x)=\int^{x} \frac{y_{1}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s
$$

Now that $C_{1}(x)$ and $C_{2}(x)$ are known, the particular solution is as well.

$$
\begin{aligned}
y_{p}(x) & =C_{1}(x) y_{1}(x)+C_{2}(x) y_{2}(x) \\
& =y_{1}(x) \int^{x}-\frac{y_{2}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s+y_{2}(x) \int^{x} \frac{y_{1}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s \\
& =-\int^{x} \frac{y_{1}(x) y_{2}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s+\int^{x} \frac{y_{1}(s) y_{2}(x)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s \\
& =\int^{x}\left[-\frac{y_{1}(x) y_{2}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s)+\frac{y_{1}(s) y_{2}(x)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s)\right] d s \\
& =\int^{x} \frac{y_{1}(s) y_{2}(x)-y_{1}(x) y_{2}(s)}{y_{2}^{\prime}(s) y_{1}(s)-y_{1}^{\prime}(s) y_{2}(s)} F(s) d s \\
& =\int^{x} \frac{y_{1}(s) y_{2}(x)-y_{1}(x) y_{2}(s)}{W\left\{y_{1}(s), y_{2}(s)\right\}} F(s) d s
\end{aligned}
$$

Note that the Wronskian of two functions can be written as a determinant.

$$
W\left\{y_{1}, y_{2}\right\}=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} .
$$

Therefore, the general solution to the inhomogeneous ODE is

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{1} y_{1}(x)+C_{2} y_{2}(x)+\int^{x} \frac{y_{1}(s) y_{2}(x)-y_{1}(x) y_{2}(s)}{W\left\{y_{1}(s), y_{2}(s)\right\}} F(s) d s .
\end{aligned}
$$

